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Ab initio analysis of proton transfer dynamics in (H2O)3H
+
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We have harvested ab initio trajectories of proton transfer in (H2O)3H+ by combining Car-Parrinello molecular
dynamics (CPMD) with the transition path sampling method. Two transition state regions contribute to these
dynamics, with saddle points similar to those identified by Geissler, Dellago, and Chandler for an empirical model
of the same cluster [Phys. Chem. Chem. Phys. 1, 1317]. As in that model, the location of a transition state along
a finite-temperature trajectory indicates that proton transfer is driven by reorganization of the oxygen ring. From
vibrational properties it is estimated that the characteristic time for proton transfer is ∼ 1 ns at a temperature
of 300 K.

1. Introduction

Simulating the dynamics of chemical transfor-
mations poses a significant challenge when reac-
tion coordinates are unknown. At the heart of
this challenge lie the long time scales associated
with activated events and the computational diffi-
culty of evaluating nuclear forces accurately. The
former problem may in principle be overcome us-
ing an importance sampling in trajectory space,
as prescribed by the method of transition path
sampling[1–3]. The latter problem is severe when
electronic structure calculations are required at
each discrete time step in order to integrate nu-
clear equations of motion. Accurate quantum
chemistry calculations are uniformly too expen-
sive for this purpose for more than a few degrees
of freedom. The most efficient ab initio alterna-
tive for computing forces is provided by density
functional theory (DFT). Although DFT is inher-
ently inexact when empirically designed function-
als are used, well-parameterized functionals such
as BLYP give accurate results for many chemi-
cally interesting applications[4–6]. By combining
path sampling with dynamics generated by DFT,
one should in principle be able to study the mi-
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croscopic mechanisms of chemical reactions effi-
ciently.

In this letter we demonstrate that sampling re-
active trajectories computed by DFT-based Car-
Parrinello molecular dynamics (CPMD) is indeed
feasible. In particular, we have harvested pro-
ton transfer trajectories for the protonated water
trimer, (H2O)3H+. In order to perform this sam-
pling efficiently, it is necessary to treat the de-
grees of freedom associated with the Kohn-Sham
wavefunction specially, as discussed in Section II.
The trajectories we collect, also described in Sec-
tion II, qualitatively resemble those generated by
an empirical model of this cluster[7]. In addition
we have located a member of the transition state
ensemble using a separatrix analysis. This anal-
ysis is presented in Section III. In distinguishing
the transition state from nearby configurations,
we find that rearrangement of the oxygen ring
plays a dominant role in proton transfer dynam-
ics. In Section IV we use transition state theory
to estimate the rate of proton transfer at room
temperature.

2. Harvesting CPMD trajectories

The transition path sampling method achieves
an importance sampling of reactive pathways by
requiring that newly generated trajectories sat-
isfy appropriate boundary conditions. Specifi-
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cally, a path is rejected unless it begins in the re-
actant basin of attraction, A, and visits the prod-
uct basin of attraction, B, at some point along
the trajectory. It is therefore necessary for effi-
cient sampling that a trial trajectory satisfy these
boundary conditions with reasonable probability.
(∼ 40% is optimal.[8]) In successful applications
of the method, new trajectories have been gen-
erated using “shooting” moves. In these moves,
momenta at a certain time along an old trajec-
tory are displaced by a small, randomly chosen
amount, and equations of motion are integrated
to the endpoints of the new trajectory. Provided
the computed dynamics of the system are nearly
reversible, this algorithm produces a trial path
which is arbitrarily similar to the initial path. A
desired acceptance probability, pacc, may in prin-
ciple be obtained simply by tuning the magnitude
of the momentum displacement.

When using density functional theory to study
nuclear dynamics on the Born-Oppenheimer sur-
face, care must be taken to preserve the inherent
reversibility of the motion. In many applications,
forces are computed by numerically seeking the
electron density which minimizes the energy func-
tional, E[{ψi}, {RI}], at each time step. {ψi} and
{RI} denote the occupied single-particle Kohn-
Sham orbitals and the nuclear positions, respec-
tively. While this method gives forces which are
in principle correct, the dynamics it generates are
not rigorously reversible when the initial condi-
tions for optimization are taken from a previous
time step and the optimization accuracy is finite.
The degree of reversibility may be improved by in-
creasing the accuracy of this search, but the pro-
cess is costly, and an efficient alternative exists.
The molecular dynamics method of Car and Par-
rinello[9] avoids a separate minimization at each
time step by instead propagating the electron
density according to a reversible, though ficti-
tious, dynamics. In doing so, the time derivatives
of the Kohn-Sham orbitals, {ψ̇i}, are introduced
as additional degrees of freedom in the equations
of motion. Although a price is paid in the length
of a time step which produces stable dynamics
near the Born-Oppenheimer surface, the gain in
reversibility makes CPMD a more suitable choice
for the purposes of path sampling.

To perform a shooting move, we select a time
step from an existing CPMD trajectory and dis-
place only the nuclear momenta, leaving the {ψ̇i}
unchanged. Using the nuclear configuration and
Kohn-Sham wavefunction at that time step, the
new nuclear momenta, and the unperturbed {ψ̇i},
a trial trajectory is computed. The path is then
accepted or rejected in the usual manner, accord-
ing to boundary conditions and criteria appro-
priate to the desired ensemble of initial condi-
tions. In this scheme the wavefunction {ψi} and
its rate of change {ψ̇i} must be stored from a pre-
vious path in order to generate a new one. With
current computational resources, it is impractical
to store this amount of data at regular intervals
along a trajectory. Instead, we select the time
steps for the next n shooting moves prior to cal-
culating a trajectory. The corresponding data are
stored only at those n time steps. If all n moves
are sequentially rejected (an event of probability
(1− pacc)n for uncorrelated statistics), the subse-
quent sequence of n moves is selected and the old
trajectory is regenerated, again storing data only
at the desired time steps. For the current work
we have used n = 5 so that the need to regen-
erate paths is infrequent. It is also noteworthy
that the process of displacing nuclear momenta
without changing the {ψ̇i} encourages exchange
of energy between nuclei and electrons. In other
words, the system is gradually heated away from
the Born-Oppenheimer surface. In the simula-
tions we report here, the fictitious kinetic energy
arising from the wavefunction dynamics increased
on the order of 1% per shooting move. For long
path sampling simulations it would be necessary
to thermalize the electronic degrees of freedom.

Using the techniques described above, we have
performed 25 shooting moves to study proton
transfer in (H2O)3H+. A standard parameteriza-
tion of CPMD for aqueous systems was adopted
in this work. For all calculations we used the
BLYP functional[10], a fictitious mass associated
with the {ψ̇i} of 900 amu, a time step of 0.145
fs, cluster boundary conditions [11], a plane wave
cutoff of 70 Ry, and a hydrogen mass of 2 amu.
For sampling of transition paths, we used an en-
ergy consistent with an average temperature of
300 K in the stable state. We characterize the
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Figure 1. Stable state (a) and lowest energy tran-
sition state (b) for proton transfer from molecule
1 to molecule 2. We use the differences between
oxygen ring angles, ∆φ = φ2 − φ1, and between
hydrogen bond angles, ∆α = α1 − α2, as order
parameters for this process.

stable states by the geometry of the oxygen ring.
In terms of angles φ1 and φ2 at the base of this
triangle of oxygen atoms, state A is defined by
∆φ ≡ φ2 − φ1 < −5◦ and state B by ∆φ > 5◦.
(See Fig. 1 for a graphical definition of these pa-
rameters.)

For proper sampling of transition states, the
length of trajectories in the path ensemble, τ ,
should exceed the time required for the system
to commit to a stable basin of attraction, τc.
For τ < τc a constraint is effectively imposed
in trajectory space, and harvested pathways are
not representative of the correct transition path
ensemble. In our studies of the Stillinger-David
model of this cluster, trajectories initiated in the
transition state region recrossed this region with
very low probability for times longer than 50 fs[7].
In other words, nearly all trajectories commit to
a particular stable state within τc ≈ 50 fs. In the
current work we consider trajectories of length
τ = 60 fs.

The initial path for our sampling was con-
structed by exciting the unstable mode of a tran-
sition state configuration. The transition states
for proton transfer are known approximately from
our studies using the empirical Stillinger-David
force field[7] and have also been identified by
Wales using DFT[12]. Our sampling of trajec-
tories in the Stillinger-David model revealed two
important transition state regions. In both of the
corresponding saddle point configurations, the

donating and accepting water molecules are re-
lated by a symmetry operation. Using CPMD,
we have determined these transition state struc-
tures more accurately. The lower energy sad-
dle point is shown together with the potential
energy minimum configuration in Fig. 1. The
transition state depicted in Fig. 1 (b), lying 5.7
kcal/mol above the energy minimum, was used to
generate our initial proton transfer pathway. In
this C2-symmetric configuration dipoles of the do-
nating and accepting molecules are aligned anti-
parallel to one another. The second transition
state has Cs symmetry in which these dipoles
are roughly parallel and lies approximately 0.7
kcal/mol higher in energy than the first transition
state. Our sampling was not thorough enough
to observe transitions through the higher energy
transition state. Both saddle point configurations
were identified by allowing the cluster to relax
subject to a constraint of symmetry between do-
nating and accepting water molecules. The ex-
istence of a single unstable mode confirmed that
these structures are indeed saddle points.

Over the course of sampling transition paths,
a diffusion occurs in trajectory space. Although
an initial trajectory may be constructed artifi-
cially, this diffusion generates reactive trajecto-
ries with frequencies appropriate to their proper
weights. After a certain period of sampling, the
harvested trajectories will therefore be typical
pathways that are not correlated with the initial
pathway. In the sampling reported in this let-
ter, we indeed observe diffusion away from the
contrived initial trajectory. (Snapshots along the
final pathway are shown in Fig. 2.) Typical
proton transfer paths do not pass through the
minimum-energy saddle point but rather through
less symmetric, higher energy states in the tran-
sition state region. In the saddle point configu-
ration of Fig. 1 (b), the molecules numbered 1
and 2 are equivalent. In typical paths this strict
equivalence is not realized. Symmetry of the oxy-
gen ring and symmetry of hydrogen bond angles
are observed at different times along most proton
transfer trajectories. As in reactive trajectories
of the Stillinger-David model[7], the excess pro-
ton oscillates between molecules 1 and 2 during
the transfer, while rearrangement of the oxygen
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Figure 2. Snapshots along the final trajectory of
our path sampling. In the left panel the excess
proton is initially bound to molecule 1. In the
middle panel, 20 fs later, the oxygen ring is sym-
metric and the excess proton is shared between
molecules 1 and 2. At the end of this trajectory,
depicted in the right panel, molecule 3 has moved
across the cluster, and the proton has been trans-
ferred to molecule 2.

ring progresses nearly monotonically.

3. Transition state analysis

In analyzing transition dynamics it is instruc-
tive to classify configurations according to a prob-
ability PB to relax into the product state. In par-
ticular, we consider a configuration to be a transi-
tion state if half of all trajectories initiated from
it with random momenta relax into each stable
state[13,14]. This definition allows one to search
“in the dark” (i.e., without prior knowledge of the
mechanism) for the collective coordinates which
drive a process. We have located such a config-
uration along the trajectory depicted in Fig. 2.
From our kinetic studies of the Stillinger-David
model [7], we anticipate that ∆φ = 0 describes
the transition state surface to a good approxi-
mation. For this reason we began our search at
the configuration for which ∆φ vanishes (t = 22
fs in this trajectory). We generated 20 trajecto-
ries from this configuration with momenta ran-
domly selected from a microcanonical distribu-
tion. Of these trajectories only 6 relax into stable
state B, i.e., PB ≈ 0.3. This configuration with
∆φ = 0 lies nearer the reactant’s basin of attrac-
tion than the product’s. Because the transfer-
ring proton oscillates between molecules 1 and 2
during the transition, its position does not seem

to explain this fact. Rather, asymmetry in the
strength of hydrogen bonds to the “solvating” wa-
ter (molecule number 3 in Fig. 1) is a probable
explanation. Characterizing these hydrogen bond
strengths by their respective angles, αi (as defined
in Fig. 1), we find that the solvation of molecule 1
is stronger than that of molecule 2 in the config-
uration considered above. The order parameter
∆α ≡ α1 − α2 is plotted in Fig. 3 alongside ∆φ
for this path. The hydrogen bond angles do not
become equal until later in the trajectory. Conse-
quently, we continued our transition state search
with configurations at later times. The geome-
tries at t = 26 fs and t = 30 fs give PB ≈ 0.4
and PB ≈ 0.5, respectively. The latter config-
uration, a transition state, has order parameter
values ∆φ = 1.8◦ and ∆α = −5◦, reflecting a
compromise between oxygen ring and hydrogen
bond angle symmetrization. Both of these order
parameters indirectly describe the strength of hy-
drogen bonds from molecule 3 to the donating
and accepting water molecules. Evidently, these
hydrogen bonds play a central role in the transi-
tion. When the “solvating” water stabilizes donor
and acceptor equally, a transition state is reached,
and proton transfer may occur.

4. Proton transfer rate

The rate of an activated classical process can
be computed exactly by performing averages over
transition path ensembles. Straightforward cal-
culation of these averages typically requires exe-
cution of ∼ 104 shooting moves. Rate constants
can be computed less expensively, however, by ap-
plying statistical transition state theory, with the
transition states determined from transition path
sampling. Indeed, Geissler et al. showed that
the proton transfer rate in an empirical model of
(H2O)3H+ is reasonably well predicted by such
a calculation, corresponding to classical RRKM
theory. 3

3It was reported in Ref.[7] that RRKM theory overesti-
mates the proton transfer rate constant by a factor of
∼ 15. The equation used to obtain this result, Eq. 10
of Ref.[7], however, is in error. The angular frequencies ωi
should be replaced by the corresponding frequencies νi,
reducing the rate constant by a factor of 2π. The correct
RRKM estimate differs from the path sampling result by
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Figure 3. Order parameters ∆φ (solid line) and
∆α (dashed line) as a function of time t for the
trajectory shown in Fig. 2. ∆φ changes sign near
t = 20 fs. ∆α, which characterizes peripheral
hydrogen bonds, does not change sign until t ≈ 35
fs. The transition state is located at t ≈ 30 fs for
this path.

Using vibrational properties predicted by DFT,
we have computed proton transfer rate con-
stants from both classical and quantum mechan-
ical RRKM theory [15]. Within this theory the
stable state and transition states are treated as
harmonic oscillators in s and s − 1 dimensions,
respectively. Here, s = 24 is the number of de-
grees of freedom in the system. At a given energy
the rate constant k(E) is computed according to
transition state theory. Specifically, k(E) is the
ratio of the number of accessible microstates at
the transition state to the density of microstates
in the stable region. Because the vibrational
quanta of (H2O)3H+ span a range of 1/2 kBT to
10 kBT at a temperature T = 300 K, classical and
quantum mechanical results for k(E) differ signif-
icantly at the energy studied. This discrepancy
of several orders of magnitude arises primarily
from zero point motion of nuclei, which effectively
shifts the energy scale of the quantum mechani-
cal system. A uniform shift in energy does not,
however, influence canonical distributions. Con-

only a factor of ∼ 2.

sequently, the thermal rate constants, k(T ), pre-
dicted by classical and quantum mechanics agree
much more closely. At T = 300 K quantization
enhances the proton transfer rate constant by less
than a factor of 2. For the lower energy transition
state, quantum canonical transition state theory
predicts k = 2.3 × 108 s−1 at this temperature.
For the higher energy transition state, the pre-
diction is k = 1.1× 108 s−1.

The influence of quantum mechanical tunnel-
ing on proton transfer dynamics is expected to
be small as well, since the unstable modes of both
transition states have low associated frequencies.
Modeling the potential along the reaction coor-
dinate as a symmetric Eckart barrier, we obtain
rate constant correction factors due to tunneling
of 1.02 and 1.03 for the lower energy and higher
energy transition states, respectively. Combining
these small corrections with the transition state
theory rate estimates at T = 300 K yields a char-
acteristic reaction time of ∼ 1 ns. This time scale
is significantly shorter than that predicted by the
empirical Stillinger-David force field and should
be accessible experimentally.
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